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The engineer is frequently confronted with the need to solve boundary-value problems where the first
derivative, for example, of the solution is discontinuous at one or more points. Solution of such problems
by ordinary application of the finite element scheme often proves unsatisfactory when the ‘singularity’ is
of the type which cannot be removed at the start of the calculation.

The paper illustrates some of the consequences which arise from these ordinary solutions and then
demonstrates a process of solution which makes use of a modified Rayleigh-Ritz method. The modifica-
tion provides a practical and versatile mode of calculation which allows extensive exploitation of the
singular functions in augmenting the piecewise polynomials of the finite element scheme. Details of tests
are given which help in assessing the accuracy of the numerical results.

An important enginecring activity concerns the fracture mechanics study of cracked structures where
prediction of safety is based upon the value of the stress intensity factor as calculated from a linear elastic
analysis. The stress intensity factor is a measure of the amplitude of the dominant singularity at the ends
of the crack and examples are given of its calculation using the modified Rayleigh-Ritz method.

1. INTRODUCGTION

A Discussion Meeting was held in June 1970 at the Royal Society on the numerical solution of
partial differential equations. A recurrent feature in the Discussion concerned the difficulties
which are encountered in obtaining a satisfactory solution accuracy and rate of convergence
(Walsh 1971; Fox 1971; Whiteman 1971) in boundary-value problems where there are
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non-removable singularities such as occur at points of discontinuity. Emphasis was given to the
underlying mathematics and in applications to the method of finite differences. The present purpose
is to provide contrast by illustrating a finite element scheme which takes advantage of a recent
modification to the Rayleigh—Ritz method (Morley 1969, 1970). The modification provides an
essentially practical, but well founded, and very versatile mode of calculation. It separates the
calculation into distinct stages and permits a more extensive exploitation of the available singular
functions than that recently described by Fix (1969) who also augments the piecewise polynomials
of the ordinary finite element scheme.

Finite elements may be regarded as a means of piecewise application of the Rayleigh-Ritz
principle and, in view of the numerical complexities which are associated with the solution of
even the simplest boundary-value problem, it is considered appropriate here to commence with
numerical experiments on a one-dimensional interpolation problem. This sets out to provide a
piecewise linear representation u(x) of a given singular function u* (x) over x, < ¥ < x, such that
some functional D(u* —«) is minimized. Now, the term ‘singular’ is freely used whenever rather
exceptional circumstances are encountered, but experience with this simple problem highlights
the natural definition in the context of a piecewise method of solution. Theory predicts that a
‘best’ rate of convergence is available as the piecewise linear representation advances to succes-
sively finer uniform interval lengths (xy —x,) /N when u*(x) has a continuous second derivative
over %, < ¥ < xy which has a maximum modulus A4,. The quantity [D(u* —u)]? provides a con-
venient norm with which to measure the error and one hopes, in a practical situation, that this
error diminishes at the ‘best’ convergence rate even starting with moderately large interval
lengths. Our numerical experiments on the one-dimensional problem convince us that a marked
deterioration in convergence rate occurs when M, does not exist. This leads to the essentially
practical definition that «*(x) is singular in a piecewise linear representation whenever M, does
not exist; there is a natural extension of the definition to higher degree representations. It also
transpires that even the best convergence rate in a piecewise linear representation is too slow for
most practical purposes and theory predicts now that solution accuracy is related to the actual
magnitude of M,. Thus, if we do not wish to further restrict the class of problems which might be
considered amenable to practical solution by piecewise linear means, it is inevitable that attention
be paid not only to the existence of M, but also to its magnitude. A mitigating feature is that the
analytic structure, but not necessarily the amplitude, of these singularities and near singularities
is predictable for many of the boundary-value problems which occur in practice. Clearly, when
these analytic structures are incorporated into the solution process we seek to retain those
agreeable characteristics, so important in engineering applications, which belong to the finite
element technique -like positive definiteness, bandedness/sparseness of the assembled simul-
taneous equations for the nodal variables. All this can be achieved with the modified Rayleigh-
Ritz principle and, in this one-dimensional problem, a quite exceptional accuracy is readily
obtained for just one piecewise interval over the complete range ¥, < ¥ < xy. Furthermore, the
numerical evidence from this example shows that solved quantities such as « may be effectively
expressed in the form u = «’(1 +¢N~7) over a wide range of values of the integer N which controls
the interval/mesh size. Here, #’, ¢, v are constants where «’ is the extrapolation of  for very large
values of N, while if |¢| < 1 then the solution is satisfactory for small N; the positive constant vy is
a measure of the rate of convergence which is actually achieved. Much use is made of such
formulae in assessing the merit of results obtained in the sequel.

After this preliminary, attention is duly given to numerical experiments on boundary-value
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problems which have arisen out of practical situations. The first concerns a much studied plane
harmonic mixed boundary-value problem with non-removable singularity; it was treated some
time ago by Motz (1946), subsequently by Woods (1953) and more recently and notably by
Whiteman (1971) at the Discussion Meeting, but a wholly satisfactory numerical solution is still
awaited. The favoured solution process has, so far, been largely by the method of finite differences
with, or without, special representation of the behaviour near the singular point. The boundary
is of rectangular shape and here the whole enclosed region is partitioned by a uniform mesh of
triangular finite elements; the piecewise Rayleigh—Ritz coordinate functions are then considered
to vary linearly over each element with proper matching conditions along the edges. Theoretical
work by Zlamal (1968) shows that the best rate of convergence as well as solution accuracy is again
related to the existence and magnitude of M,. Solutions of the homogeneous field equation are
then given which describe the analytical structure at the singular point and it is noted that this
problem has a nested double singularity in relation to a piecewise linear solution. These singular
functions are then allowed to range over the whole enclosed region because this offers very definite
practical advantages. For example, exactly satisfying the homogeneous field equation implies
that this representation of the singular behaviour can be readily disassociated (by Green’s
formula) from the ingredient surface integrations of the finite element method. Three sets of
results from finite element experiments are presented; the first does not recognize the presence of
the singularity and the results for neighbouring points show considerable disparity from White-
man’s benchmark values. The second experiment incorporates terms which are capable not only
of formally reproducing the analytic structure at the singular point, but also of satisfying exactly
all the Rayleigh-Ritz subsidiary conditions on the boundary. Application of the modified
Rayleigh—Ritz method then provides a somewhat improved set of results. In the third experiment,
the simplest form of representation of the analytic structure is adopted with the Rayleigh-Ritz
subsidiary conditions satisfied only in a piecewise linear sense. These are the most convincing
results and are likely to be satisfactory for practical purposes. The conclusion to be drawn from
these experiments is that the actual choice of terms to describe the singularity, or near singularity,
is of special importance in achieving a successful numerical solution by practical means.

The paper concludes with application of the method to the plane stress elastic analysis of plates
which contain a crack. This class of problem is of importance to engineers and occurs in fracture
mechanics —which is the study of structural failure by catastrophic crack propagation at average
stresses well below yield strength. In fracture mechanics, prediction of safety is based in the first
instance upon the amplitude of the dominant stress singularity, i.e. the so-called stress intensity
factor, as calculated from the elastic analysis of the cracked structure. The economic ramifications
of these problems are clearly far reaching and so it is understandable that they have attracted
considerable attention from engineers over the years with the result that there is now a substantial
body of information available for the more standard configurations and loadings. Present-day
efforts are largely directed towards establishing numerical methods which allow stress intensity
factors to be calculated in a practical manner for the most complex structural configurations.
The modified Rayleigh—Ritz method is well suited to these circumstances and, in contrast with
many of its alternatives, is well founded and versatile. Moreover, it is foreseen that the method
will have useful application in the relatively unexplored study of crack propagation in solids as
well as in anisotropic materials.

Acknowledgement is made to the invaluable assistance of S. W. Nicolson, a sandwich student
from the Department of Mathematics at the University of Surrey, throughout the computations.
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2. ONE-DIMENSIONAL INTERPOLATION PROBLEM

The purpose in beginning with a simple interpolation problem is to illustrate some of the
difficulties and to accumulate experience helpful in the solution of real boundary-value problems
with non-removable singularities.

The chosen one-dimensional interpolation problem concerns, initially, the piecewise linear
continuous representation u(x) of a given continuous function «* () so that

W) () (5 <x <xy), (2.1)

where there are N equally spaced intervals. Define the jth interval to lie between the coordinate
positions # = &; ; and & = x; so that the linear representation in this interval may be written

u(x) = [N] (2 — %) [(¥ = 20) ulxy) + (% = 2) u(x; )] (0 <& < xp). (2.2)

The values of the u(x;) are to be determined so as to minimize a functional D(u* --u) which is
defined as

X_u) = D —ua*—u) = [ (duF_du)®
Dw* —u) = D(u* —u,u* —u) = f ) ( = - 2) dx, (2.3)
subject to the satisfaction of the subsidiary condition

u(xg) = u*(x,). (2.4)
Thus 8D(u* —u) = —2D(u* —u,8u) =0 (2.5)

for arbitrary variations 8u(x;), j—> 1,2, ..., N, where

(34 *

D(u*,u) = . %S—de (2.6)
This minimization process provides a symmetric, banded, positive definite set of simultaneous
equations to solve for the «(x;). Such equations are intrinsic to the finite element method and some
very efficient solution procedures are available for use in conjunction with a digital computer. In
the present instance, however, the banded equations are tridiagonal and the solution is given
readily by ‘

u(x;) =u*(x;) (j=0,1,2,...,N), (2.7)

so that the piecewise linear representation interpolates u* (x) exactly at the nodal points x;. In the
subsequent computations it is useful to note that equations (2.4) and (2.5) provide

D(u*,u) = D(u,u), (2.8)
so that D(u* —u) = D(u*) — D(u). (2.9)

It is noted that all the above refers to an extraordinarily simple situation wvis-d-vis the real
boundary-value problem where «* is never explicitly defined except possibly on the boundary.
To fix ideas, consider the piecewise linear representation of the continuous function

u*(x) = (sinx)t (0 < x < 3m), (2.10)

and introduce a quantity E(u* —u) which measures the averaged relative error of the piecewise

representation by
E(u* —u) = [D(u* —u)[Dy]}, (2.11)
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where D, is a constant defined by

Im(d . 2

D, = {-d—x (smx)%} dx = 0.983271583. (2.12)
0

Results of numerical experiments on the #* (x) of equation (2.10) are listed in table 1 where the

relative error E(u* —u) is tabulated for a range of values of N. Experience with this kind of

calculation shows that the behaviour of quantities like the relative error can be expressed quite

tely b
ey E(u* —u) = cN- (2.13)

over a wide range of values of the integer N. In this equation, the magnitude of ¢ when taken in
comparison with unity provides aguide asto whether the solutionissatisfactory forsmall (practical)
values of N, while the positive constant y measures the rate of convergence, i.e. the efficiency of
the approximation procedure. Indeed, table 1 shows that near N = 30 the relative error behaves
like

E(u* —u) = 0.417N-02,

} (2.14)
= 0.172 for N = 30.

The large amplitude of this relative error at N = 30 shows that the ordinary piecewise linear
representation of the #*(x) of equation (2.10) is not satisfactory and this conclusion is reinforced
by the substantial value which is attained by ¢ (0.417); with y = 0.26 this solution is seen to be
associated also with a very slow rate of convergence.

TABLE 1. RELATIVE ERRORS IN THE PIECEWISE LINEAR REPRESENTATION % OF THE
GIVEN FUNCTION #* = (sinx)% ovVER 0 < x < }n

N E(*—u)  NOBE(u*—uy) N Eu*—u)  NOBE(y*—y)
1 0.594 0.594 10 0.230 0.419
2 0.403 0.482 15 0.206 0.417
3 0.338 0.450 20 0.191 0.417
4 0.304 0.436 25 0.181 0.417
5 0.283 0.429 30 0.172 0.417

It is of interest to ascertain an upper bound on the relative error as well as to establish the best
available rate of convergence in a more favourable context. This is readily achieved by noting
that, because of equation (2.7),

du*[dx—dufdx = 0 atsome x=§ (¥_4<&<w)
and hence |du*[dx — du/dx| < (xy —xe) My N7, (2.15)

where M, is the maximum modulus of the continuous second derivative of u* (x) over x, < x < xy.
When equation (2.15) is substituted into the functional of equation (2.3) integration provides

D(u* —u) < (xy—x0)3 MZN? (2.16)
and so the relative error of equation (2.11) is bounded by
E(u* —u) < [(xy—2%,)3/Do]t My N, (2.17)

This best rate of convergence y = 1, see equation (2.13), is available for large enough Nin a piece-
wise linear representation provided M, exists, while the accuracy, as measured by ¢, is related to
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the actual magnitude of M,. It therefore secems a natural consequence for us to refer, in the sequel,
to u*(x) as being singular whenever A4, does not exist.{

Now, the second derivative of the u* (x) of equation (2.10) is unbounded at x = 0 and so M,
does not exist over the required interval 0 < x < 3w. The function is therefore singular and this is
held to account for the unsatisfactory outcome from the above numerical experiments. A popular
procedure to alleviate the ill effect in a boundary-value problem is to employ a special region near
the singularity and then to continue with the ordinary numerical process elsewhere. This is used
by Fox (1971) in the finite difference context while many authors commend their own super
element in the finite element context. However, this involves some compromise because of the
need to define, ab initio, the extent of the special region. Let us make a partial assessment of this
kind of procedure by repeating the above experiments for the piecewise linear representation of

u*(x) = (sinx)t (0 < x, < x < §m), (2.18)

TABLE 2. RELATIVE ERRORS IN THE PIECEWISE LINEAR REPRESENTATION % OF THE
GIVEN FUNCTION u* = (sinx)% OVER xy, < & < §n

%o = 0.01 %o = 0.02 o = 0.05 %o = 0.20
r A A ~ A N r A N r A N
N E(u*—u) NO'E(y*—u) E(u*—u) NSBE(y*—u) E(u*—u) NOYSE(u*—u) E(u*—u) NOE(y*—u)
1 0.524 0.524 0.500 0.500 0.458 0.458 0.355 0.355
2 0.317 0.523 0.293 0.520 0.255 0.491 0.183 0.366
3 0.244 0.539 0.219 0.543 0.183 0.516 0.124 0.371
4 0.205 0.556 0.180 0.564 0.144 0.536 0.094 0.373
5 0.179 0.570 0.154 0.5682 0.120 0.550 0.075 0.376
10  0.118 0.619 0.095 0.635 0.067 0.589 0.038 0.379
15 0.091 0.642 0.070 0.656 0.047 0.603 0.025 0.379
20 0.075 0.652 0.056 0.665 0.036 0.607 0.019 0.380
25  0.064 0.655 0.047 0.666 0.029 0.608 0.015 0.380
30  0.056 0.654 0.040 0.665 0.024 0.607 0.013 0.380
N ~ J - v J - —~ J - w__,_,___‘_____/
M, 59.3 25.0 8.0 1.6

which avoids the singular point (cf. equation (2.10)). The numerical results are listed in table 2
for values of x, = 0.01, 0.02, 0.05, 0.20 and while these show, near N = 30, a marked improvement
in the rate of convergence to y = 0.72 for the smallest value x, = 0.01 (cf. equation (2.13) where
v = 0.26), it is not until x; = 0.20 that the best available rate is actually approached. However,
for this very simple problem it seems unreasonable to be satisfied with a solution where the
relative error E(u* —u) = 0.013 is questionably negligible and is, moreover, still associated with
a substantial value for ¢(0.380). Reference values of M, are also listed in table 2. Furthermore,
it is to be pointed out that the above provides a particularly favourable assessment of the special
region procedure to the extent that the exact relation
u(x) =u*(x) (0<x<x) (2.19)
is enforced.
Consider now a different approach which avoids the use of special regions and note also that
while the structural shape of the singularity is predeterminable in simple terms for many
boundary-value problems, the evidence suggests that this needs to be further supplemented to

1 In extending this definition of singular * (x) we note that it is directly dependent upon the polynomial degree
of the piecewise representation. For example, the relative error E(u* —u) of a piecewise cubic representation may
be shown to be proportional to M, N—* where M, is the maximum modulus of the fourth derivative of #*(x) over
%y < x < xp; in this case it would be appropriate to refer to #*(x) as being singular whenever M, does not exist.
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achieve a satisfactory solution. Thus, the specific «*(x) which is defined by equation (2.10) may
be expanded about the point at x = 0 in the form, say,

u*(x) = (sina)t = uf (%) — 3o (x) + yoottn (¥) — ..., (2.20)
where uf (x) = xd, uf(x) =%, uF(x) =2%,. (2.21)

The structure of the singularity itself is adequately described by just the first term «f (%) so that
the remaining terms are characterized as supplementary. In boundary-value problems, however,
it is only the structural shape of the individual terms in this expansion which is predeterminable
so, typically, the only information known near the singular point is that

u*(x) = oty uy (x) + ayud (x) +ozul (x) + ..., (2.22)

where uff (x), uj (x), ui (x) are as given by equations (2.21) but the amplitudes a,, &y, @3, ... are not
known in advance. In seeking the most practical way of incorporating an equation like (2.22) into
the piecewise linear approximation scheme, as typified by equations (2.1) to (2.9), we regard it
to be particularly important neither to disturb the symmetric, banded, positive definite set of
simultaneous equations from which the u(x;) are determined nor to modify the interval spacing.
Accordingly, let us seek an approximate representation to the u*(x) of equation (2.10) through

= (sinx)d o wt o (U —g) + oy (uf —u5) +o5 (5 —u5) (0 < x < §m), (2.23)

where uf (x), uy (), u3 (x) are the function already defined by equations (2.21) and where, as yet,
u(x), uy(x), uy(x), us(x) are arbitrary continuous piecewise linear functions each taken over the
same interval spacing with a,, o,, @5 as arbitrary constants. Next, minimize the functional, see

equation (2.3),
Dlu* —u— oy (uf —uy) — oy (u —uy) — oty (u5 —u3)], (2.24)

subject to the satisfaction of subsidiary conditions, see equation (2.4)
u(0) = u*(0), u,(0) =ui'(0), uy(0) =uz(0), uy(0) = u5(0), (2.25)

where the nodal values u(x;), u,(x;), u5(%;), u3(x;) of the piecewise linear functions, withj = 1, 2, 3,
., N, as well as the constants a,, a,, a; are to be subjected to arbitrary variation. This provides
a minimization problem which requires satisfaction of the bilinear conditions.

Dlw* —u— oty (i —uy) — oty(s —uy) — ot (s —us), Su] = 0,
Dlu* —u— oy (uff —uy) — ag(us —uy) — ay(uy —ug), Suy] = 0,
Dlu* —u—ay(uy —uy) — gy —uy) —og(uy —us), Suy] = 0,

—tty) — oty (U5 —uz), Suy] = 0, (2.26)

Now, it is impossible to distinguish between the variations

Bu(x;), Buy(x;), OSuy(x;), Sug(x;) (2.27)

and so the first four conditions of equations (2.26) are identical and are satisfied by making

individually
8D (u* —u) = 8D (uff —uy) = 8D (uy —uy) = 8D (us —ug) = 0, (2.28)
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subject, of course, to the satisfaction of the subsidiary conditions of equations (2.25). Thus u is
identical with the ordinary piecewise linear representation developed through equations (2.1) to
(2.9), while u,(x), uy(x), ug(x) are the ordinary piecewise linear representations respectively to
uf (x), uy (x), us(x). Moreover, and with reference to the general context, all these piecewise
representations can be calculated simultaneously because of the complete identity in each
instance between the associated band matrices. The last three conditions which are expressed by
equations (2.26) allow the calculation of the constants o, o, a3 from the three simultaneous
linear equations

D ~uy) D —up,tf —uy)  D(uf —ug, 0 ~u5)| (o D(uf —uy, u* ~u)
D(u —us) D (w5 —uy, uz —uy) ayp = DU —up,u* —u)p, (2.29)
sym. D (uy —uy) oy D(ud —ugyu* —u)

where we note that
D<u;k — Uy, u;l: "ulc) = D(u;ka u;) _1)<uj: ulc) (]sk = 1,2, 3):}

2.30
D(uf —upu* —u) = D(uf,u*) —~D(uju) (j=1,2,3). ( )

TABLE 3. RELATIVE ERRORS ETC. IN THE APPROXIMATION
% % %
ut o (U —uy) + o (us —uy) +otg(uy —us)
TO THE GIVEN FUNCTION #* = (sin )% OVER 0 < x < in

N o, ay oy E

1 1.0003 —0.1244 0.00330 0.00016
10 1.0000 —0.1243 0.00324 0.00006
20 1.0000 —0.1243 0.00323 0.00003
30 1.0000 —0.1243 0.00323 0.00002

(The abbreviation E = E[u* —u— o, (uf —u;) — ote(us — uy) ~ 005 (tf — u,)] is used.)

The results of numerical experiments are listed in table 3 for a few values of N where, in contrast
with tables 1 and 2, it is observed that the relative error

Elu* —u—o(u* —uy) — og(uy —uy) —otg(uy —ug)],

see equation (2.11), is exceedingly small even for N = 1. Furthermore, as is discussed later, there
are important practical situations where it is the amplitude of the singularity which is the prime
interest and so it is worth noting here the excellent accuracy of the calculated values of the
constant «, taken in comparison with the exact value @, = 1, see equations (2.20) and (2.22).

To summarize, the kind of relations which are expressed by equations (2.23) to (2.30) are
fundamental to the approach which is employed in the sequel to obtain the solution of real
boundary-value problems in the presence of non-removable singularities. The approach,
described by Morley (1969), makes use of the Rayleigh-Ritz method where piecewise coordinate
functions u (i.e. finite elements) are supplemented with coordinate functions like the uf —u,,
uy — uy, uy —u, of equation (2.23).

3. PLANE HARMONIC BOUNDARY-VALUE PROBLEM

The successful treatment of a boundary-value problem presents more of a challenge than does
the aforegoing solution to a one-dimensional interpolation problem where appreciable guidance
is afforded by prior knowledge of the exact result.
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Let us begin by examining a particular boundary-value problem which has been much
investigated since its first treatment by Motz (1946) using the method of finite differences. There,
the problem arose out of studies into the theory of radiation and electrostatics and requires a
solution u*(x,y) to the plane harmonic field equation

02u* [Ox? + 0%u* [0y? = O (3.1)
over the rectangle R = OABCD which is shown in figure 1 with side lengths
OA = AB = etc. = 0.5.

‘y R C-_—'CIU C2
o X
(6]
2ur_ o wr_
C dn y=0.5 dn T B C,=AB+DO
C,=0A+BCD

finite element mesh N=4

o u*
_5— =0 . \l'\ d( S, w* = 1000
n Q 2y* 0 2%
— 4+ - =0
d x? ayz
x=0.5
- X
D 1w+ =500 0 ut_ o A
on —

Ficure 1. The plane harmonic problem.

The boundary is denoted by C = C; U C, and boundary conditions «* are prescribed on C

according to
u* = 500 on DO, u* = 1000 on AB, (3.2)

and boundary conditions du*/0n are prescribed on C, according to
Ou*[on = 0 on OA and BCD, (3.3)

with the outward pointing normal z inclined at an angley to the Ox axis. This is known to provide
a boundary-value problem with non-removable singularity at the conjunction O of the two
different kinds of boundary condition.

Both Motz (1946) and Woods (1953) recognized that in order to obtain satisfactory numerical
results it is necessary to provide careful treatment at the singular point. They decided to represent
the behaviour near this point by special equations and then to proceed with standard finite
difference equations in the more remote parts where the solution u*(x, y) is behaving smoothly
enough for the use of a satisfactorily large difference interval. More recently, Whiteman has
advanced a number of different solution techniques which culminate in a contribution (Whiteman
1971) to the Discussion Meeting on the uniform convergence of a finite difference solution with

39 Vol. 275. A.
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mesh refinement at the singularity; the numerical values which he presented are associated with
an aim to provide, in terms of accuracy and computer time, his best finite difference results so
that they may be used as a benchmark by future workers. Here, the same problem is subjected to
still further numerical experimentation but by the finite element method. While the results of
our calculations are not wholly satisfactory they are, none the less, quite convincing when taken
in comparison with Whiteman’s benchmark results.

In the Rayleigh-Ritz method an approximate solution u(x, )

w¥(x,9) ~ u(x,9) (3.4)
to the plane harmonic problem with exact solution u*(x,y) is obtained by minimizing the
functional

Ou* Quw\%* [(Ou* Ou
*_ ) = =
o = [[ |G -5+ (-5 o (29

over the amplitudes of the set of admissible coordinate functions which make up u(x, y); each of
the coordinate functions must be of finite norm and the subsidiary condition

=u* on C (3.6)
must be satisfied. The minimum of the functional is provided by

8D(u* —u) = —2D(u* —u,du) = 0, (3.7)

au*ﬁu Ou* Ou Ou
where *, u) ffzz( T B )dR =fCTn-uds (3.8)

on making use of the Green formula and of equation (3.1). In a finite element application of the
Rayleigh-Ritz method the coordinate functions are set up by partitioning R into, typically,
triangular subregions or elements. The piecewise approximating function u(x,y) is then con-
sidered to vary in a simple manner over each element with proper matching conditions along
the edges. For the plane harmonic problem illustrated in figure 1, the triangular finite elements
are arranged to form a uniform mesh which divides the length OA into N equally spaced intervals,
the variation of u(x, y) is then assumed to be linear over each element. This simple arrangement
naturally imposes limitations upon the kind of problem for which a satisfactory and efficient
numerical solution can be obtained. Indeed, Zlamal (1968) shows that if u*(x,y) has continuous
second derivatives over R with maximum modulus M, and if the piecewise linear function u(x, y)
interpolates u*(x, y) exactly at the vertices of each triangle then, for the kind of mesh shown in

figure 1,
|u* —u| < 0.25M, N-2, (3.9)

while the first derivatives satisfy

u* Ou

S| < KM, N (3.10)

(cf. equation (2.15)), where K is a positive constant. It follows from equations (3.5) and (3.10)
that the bound on [D(u* —u)]%, which gives a norm of the error, is

[D(u* —u)]t < K'M, N-* (3.11)

(cf. equation (2.17)), where K’ is another positive constant. Thus, the sufficient conditions which
control a satisfactory and efficient piecewise linear solution of a plane harmonic problem are
similar to those encountered in the piecewise linear treatment of the one-dimensional problem of
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§ 2. The best available rate of convergence requires the existence of M,, while the accuracy is
related to the actual magnitude of M,. Consequently, in a piccewise linear finite element solution
it is natural to refer to u*(x,y) as being singular whenever M, does not exist.

Now, the presence of a singularity at O has already been anticipated and so M, is known not
to exist. Thus, it is not surprising to find in table 4 that there is appreciable variance between the
results obtained from an ordinary finite element solution which ignores the presence of the
singularity and Whiteman’s (1971) benchmark results. These calculations are appropriate to a
uniform mesh with size N = 16, cf. therelatively coarse mesh N = 4 which isillustrated in figure 1,
and are compared in the table with Whiteman’s finite difference and linear programming results
at points near to the singularity along the line OA, i.e. y = 0.

TABLE 4. RESULTS FROM ORDINARY FINITE ELEMENT SOLUTION
u* ~ y TO THE PLANE HARMONIC PROBLEM

values of u* ~ u along y = 0 at
A

-

-
x=0 x = OA/28 x = OA/14 x = 30A[28 x = OAJ17

f.e. mesh, N = 16 500 547.35 590.04 618.78 644.11
Whiteman (1g71), f.d. 500 573.0 606.6 632.7 655.0
Whiteman (1971), L.p. 500 576.4 608.9 634.5 656.5

The following abbreviations are used: f.e., finite element; f.d., finite difference; l.p., linear programming.

This further evidence amplifies the need to take proper account of the singular behaviour. Thus,
as in equation (2.22), we begin by seeking a suitable expansion for u*(x,y),

u*(x,y) ~ 500+ ot uf (x,y) +oauy (%, y) + ..., (3.12)

with the intention of reproducing the analytic structure at the singular point ¥ = 0, y = 0. While
determination of the magnitudes of the (real) constants oy, &, ... has to be left until the closing
stages of the calculations, immediate attention needs to be given to a suitable form for the func-
tions uf (x, y), 43 (%,9), .... Many formally equivalent forms are available, but the specific choice
is of special importance to the successful outcome of a practical calculation. Thus, the opportunity
is taken, in dealing with what is after all a relatively simple boundary-value problem, to examine
the numerical outcome of taking two different forms for these functions.

3.1. First singular solution; exact satisfaction of all subsidiary conditions
The plane harmonic functions " (x, y)
i (xy) = ~Re2z% (j=1,23,..), (3.13)
satisfy the field equation (3.1) with z the complex variable
z=x+1y (3.14)

and Re denoting that the real part is to be taken. These functions have finite norm, see equation
(3.5), and satisfy boundary conditions

if =0 for x<0, y=0, iec. along DO,} (3.15)

0uffon =0 for x>0, y=0, ie. along OA.
Since both field equation and homogenecous boundary conditions are satisfied adjacent to ¥ = 0,

y = 0we conclude that this set of functions &}° (¥, y) is adequate to reproduce the analytic structure
' 39-2
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of the singularity. Moreover, in accordance with our earlier definition, the equation (3.13) reveals
the existence of a nested double singularity because bounded second derivatives A4, do not exist
forj = 1, 2. The remaining terms in the set are characterized as supplementary and, in view of the
experience with the one-dimensional problem, the first few terms are retained in the hope of
reducing the influence of large magnitudes of second derivatives that may occur in R away from
the singular point. The branch which is to be taken for the square root in equation (3.13) is such
that, forj = 1,
1i1(1)1 |xt| 0af [y = 1. (3.16)
et
y=0

The exact satisfaction of all subsidiary conditions on Cj, see equations (3.6) and (3.2), requires
further that the «} (x,y) of equation (3.12) have at most a piecewise linear variation along AB,
i.e. along x = 0.5. To this effect, note that the harmonic functions

2i(z—0.5) (z— 1)~ (j=1,2,3,...) (3.17)

possess derivatives of all orders which are continuous in R and are non-zero at x = 0,y = 0. Thus,
the essential qualities which are enjoyed by equation (3.13) remain unchanged if we put

wl(x,y) = —Re2i(z—0.5) (z—~ 1)1 (227-%) (j=1,2,3,...). (3.18)

This form is, at first sight, commendable because each uj(x,y) now satisfies homogeneous
subsidiary conditions along the whole of C;, namely

uy =0 for <0, y=0, ie. along DO,} (.19)
uf =0 for x=0.5, y>0, ie. alongAB,
as well as satisfying on the part of C, adjacent to the singular point the condition
ouffon =0 for x>0, y=0, ie. alongOA. (3.20)

Itisremarked that it is only in rather exceptional practical situations that such u} (x, ) constitute,
asin equation (3.18), intrinsically admissible coordinate functions for the Rayleigh-Ritz method.

We may now proceed similarly as in the one-dimensional problem, see equations (2.23) ef seq.
Thus, instead of equation (3.4) put

w* >~ ut o (UF —uy) + o (uf —uy) + ...y (3.21)

where #f (x,y),u3 (x,y), ... are defined by equation (3.18) and where u(x,y), u;(%, ), us(%,y), ..
are continuous piecewise linear functions each taken over the same finite clement mesh with
oy, %y, ... as arbitrary constants. Next, minimize the functional of equation (3.5),

Dlu* —u— oy (uy —uy) — ag(uy —uy) —...] (3.22)
subject to the satisfaction of subsidiary conditions, see equations (3.2), (3.6) and (3.19),
u=u* wu;=u (j=1,23,..)onC, (3.23)

where the nodal values of all the piecewise linear functions, as well as the constants o, &, ..., are
to be subjected to arbitrary variation. As in the one-dimensional problem, the minimization of
the functional requires that

8D(u* —u) = 8D (uf —u;) = dD(uy —uy) = ... = 0, (3.24)
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subject to the satisfaction of the subsidiary conditions. Again, «(x, ) is found to be identical with
the ordinary finite element solution to u*(x,y) while u,(x,y), uy(%,y), ... are found to be the
ordinary finite element solutions respectively to uf (x,y), u3 (x, ), ... without regard having been
given to the behaviour near the singular point. Moreover, all these finite element solutions can be
calculated simultaneously because of the complete identity in each instance between the asso-
ciated band matrices. The constants e, a,, ... are subsequently calculated from simultaneous
linear equations like (2.29) but here, in virtue of equations (3.8), (3.19), (3.23) and (3.24),

£
D(uf —uy, uff —uy) =f %% (uf —u;)ds  (j,k=1,2,3,...) (3.25)
e
and, with the further help of equation (3.3),
D(uf —uju* —u) = — -ai;kuds (7=1,2,8,...) (3.26)
F—u, i j=1,2,3,...). .

It is worth drawing attention to the simplicity of this application of the modified Rayleigh-Ritz
method; it requires evaluation of the functions «' (x, y) and normal derivatives u; [0n only on the
boundary C.

A few numerical results are listed in table 5 for various sizes of finite element meshes. The
available computer program accommodates up to four functions of the type u;* (%, y) and so the
series in equation (3.21) is truncated accordingly. The results are listed for points which are near
to the singularity and, although they are in closer agreement than the ordinary finite element

TABLE 5. RESULTS FROM FIRST SINGULAR SOLUTION
* * * *
u¥ o~ uAay(uf —uy) + oo (uy —ug) + otg(uz —ug) + o (ug —uy)
TO THE PLANE HARMONIC PROBLEM

values of u* =~ u-+a,(uf —u,) ... along y = 0 at
A

r Al
x=0 x = OA[28 x = OA[14 x = 30A(28 x = OA[7
f.e. mesh, N = 4 500 554.30 584.98 611.16 634,78
5 500 558.09 589.85 616.60 640.50
6 500 560.97 593.47 620.54 644.53
10 500 567.69 601.45 628.65 651.71
14 500 570.90 604.91 631.35 653.79
15 500 571.44 605.38 631.72 654.24
16 500 571.92 605.78 632.03 654.57
Whiteman (1971), f.d. 500 573.0 606.6 632.7 655.0
Whiteman (1971), L.p. 500 576.4 608.9 634.5 656.5
The following abbreviations are used: f.e., finite element; f.d., finite difference; l.p., linear programming.
TABLE 6. COEFFICIENTS 0, (g, Og, &, FROM FIRST SINGULAR SOLUTION
TO THE PLANE HARMONIC PROBLEM
a, NO%(q 4304.44) o,  NO575(a,—80.38) oy NOS(a 4+ 36.69) o, NOS5(a,—8.11)
.. mesh, N = 4 — 142.87 368.63 38.03 —93.99 —20.07 35.38 4.36 —17.46
5 —159.23 378.33 42.09 —96.62 —21.51 36.48 4.68 —17.89
6 —172.23 383.93 45.36 —-908.13 —22.71 37.11 4.94 —8.13
10 —205.16 390.71 53.80 —-99.93 —25.90 37.85 5.65 —8.43
14  —223.09 391.08 58.45 —100.03 —-27.70 37.89 6.06 —8.43
15 —226.37 391.07 59.31 —100.03 —28.03 37.88 6.13 —8.43
16 —229.31 391.08 60.07 —100.03 —28.33 37.89 6.20 —8.43
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results of table 4 with Whiteman’s (1971) benchmark results, they are not convincing because of
the substantial changes which occur during the advance to finer meshes. The nature of these
changes becomes more apparent after examination of table 6 which gives magnitudes of the
constants oy, oy, &g, ¢, for various mesh sizes N. Similarly, to equation (2.13) it is observed, for
the finer mesh sizes, that the behaviour of these o may be closely approximated by

o~ o' (1+cN7), (3.27)
where o' is the extrapolation of « for very large values of N, while the magnitude of the modulus
of ¢ indicates whether the solution is satisfactory for small values of N, and y measures the rate of
convergence. In the most favourable circumstances one might expect y = 2, for a piecewise linear
solution, and |¢| < 1. From table 6, we find

oy = — 304.44(1 — 1.285N-05%) = — 229 31 for N = 16,

oy = 80.38(1—1.244N-057) =  60.07 for N = 16, (3.28)
oy = — 36.69(1—1.033N-0545) = _ 28.33 for N = 16, '
oy = 8.11(1 — 1.039 N-0585) — 6.20 for N = 186,

and this reveals markedly inferior-rates of convergence y as well as unacceptably large values of c.
(It is of interest to note here that the finite difference calculations by Motz (1946) and Woods
(1953) provide values a; = —285.6 and «, = — 304 respectively.) Furthermore, the substitution
of equations (3.18) and (3.28) into the truncated equation (3.12) should, as originally intended,
reproduce accurately the behaviour near the singular point, say at x = OA/28, y = 0. Typically
for the finite element mesh N = 16 we have

u*(x,y) ~ 500 —229.31uf (x,y) + 60.07uy (v, y)
— 28.33uz (x, y) + 6.20u7 (x, y) (3.29)
= 558.84 at x=;50A, y=0,
and this value compares unsatisfactorily with the 571.92 listed in table 5. These results are con-

sidered quite unacceptable and the disparities are attributed to the form chosen in equation
(8.18) to represent the functions u} (v, y).

3.2. Second singular solution; approximate satisfaction of subsidiary conditions

The finite element method shares with the finite difference method the powerful capability of
satisfying, in a piecewise sense, arbitrary subsidiary conditions. In the present context this means
that advantage can be taken of the simpler form,

uf (x,y) = @ (x,y) = —Re2z~% (j=1,2,8,...) (3.30)
for the functions ] (x,y) (see equation (3.13)) instead of that given by equation (3.18) which is
now suspect because of the constraint it may impose on the accurate representation of the analytic
structure at the nested singularity.

This second solution to the boundary-value problem proceeds in the same manner as in
equations (3.21) ef seq. except that in equation (3.23) the subsidiary conditions u; = «} are
satisfied exactly here only at the nodal points along the part AB of the boundary C,. This part of
the boundary is, incidentally, far removed from the singularity so that the functions ] (x,y) are
varying relatively slowly.t These subsidiary conditions are no longer homogeneous and a conse-

T These subsidiary conditions can be satisfied exactly by abandoning the linear variation of #;(x, y) along those
triangular finite element sides which have union with C,. This requires, however, slightly differing coordinate
functions for each of u(x, y), #;(x, y) with the result that deductions like those of equation (2.27) are not then
strictly valid.
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quence is that equations (3.25) and (3.26) have to be modified to

Dt —uyut—w) ~ [ & _uyds— [ 0y st D(u, ) (3.31)
] 35 Ui k——ogan ] 7 fo)n'c TN T '

where u, is a piecewise linear function taken over the finite element mesh such that

up = uf at nodes on Cj, (3.32)
uy = 0 atall other nodes,} '
*
and D(uf —u;, u* —u) ~ —f %Z%uds+D(uj, u0); (3.33)
(&
similarly, for the piecewise linear function «° where
4 = u* atmnodes on (j, } (3.34)
#® = 0 at all other nodes. '

Approximations which are involved in equations (3.31) and (3.33) arise out of the aforementioned
inexact satisfaction of subsidiary conditions between the nodal points on the part AB of C;. The
D(uy, u}), D(u;,u) are very simple to calculate in virtue of equations (3.32) and (3.34) while the
remaining quantities again require evaluation of the functions ) (x,y) and normal derivatives
0u [On only on the boundary C.

Some numerical results for points near the singularity are presented in table 7 for the same
finite element meshes as are used for the first singular solution. Equation (3.21), this time with
substitutions from equation (3.30), is again truncated after the fourth term. The convergence is
now more convincing with quite accurate values from the very coarse finite element mesh N = 4.

TABLE 7. RESULTS FROM SECOND SINGULAR SOLUTION
~ * * * *
u¥* o~ u o (uf —ug) +og(Uy —up) 4 ag(uz —ug) + oy (ug —u,)
TO THE PLANE HARMONIC PROBLEM

values of u* ~ u+oa,(uf—u,) ... alongy = 0 at
A

r N
x=0 x = OA[28 x = OA[14 x = 30A/[28 x = OAf7
f.e. mesh, N = 4 500 577.13 609.80 635.38 657.35
5 500 576.89 609.45 634.94 656.85
6 500 576.73 609.23 634.67 656.54
10 500 576.44 608.83 634.24 656.25
14 500 576.33 608.68 634.17 656.13
15 500 576.31 608.68 634.15 656.13
16 500 576.29 608.67 634.14 656.12
Whiteman (1971), f.d. 500 573.0 606.6 632.7 655.0
Whiteman (1971), L.p. 500 576.4 608.9 634.5 656.5

The following abbreviations are used: f.e., finite element; f.d., finite difference; l.p., linear programming.

A comprehensive comparison with Whiteman’s benchmark results, both from the finite difference
and linear programming calculations, is provided in figure 2 for points near to and surrounding
the singularity for the fine finite element meshes N = 15 and N = 16. In all instances these finite
element results are bounded by those of Whiteman and are in closest agreement with his linear
programming results; the largest-variation between finite element results from the meshes
N = 15and N = 16 amounts here to less than 0.003 9,. A more critical analysis of the validity of
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these finite element results is provided from an examination of table 8 which lists the magnitudes

of the constants a,, a,, &g, a, for various mesh sizes N. For the finer meshes the behaviour is seen

to be like
o, = —282.70(1+0.053N-0930) — — 28384 for N = 16,

= —127.69(1 — 1.540N1592) = ~ 125,31 for N = 16,
56.43(1+0.536 N-1620) = 56,77 for N = 16,
xy = 156.80(1—1.124N-1264) = 151.50 for N = 16.

K
5
|

(3.35)

&
I

All four rates of convergence y (see equation (3.27)) are substantial improvements upon those
of equation (3.28) for the first singular solution. While the value attained by |¢| (see equation
(3.27)) is acceptable in respect of the dominant term o, the values which are attained by the
remaining terms are disappointingly large. Substituting equations (3.30) and (3.35) into the

Y

561.74 569.23 578.50 589.88 603.44 618.83 635.33 652.25 699.09
561.74 569.22 578.50 589.88 603.43 618.83 635.32 652.24 669.08

561.5 569.0 578.0 589.3 602.7 618.0 634.5 651.5 668.4
562.0 569.5 578.8 590.2 603.8 619.2 635.7 652.7 669.5
548.25 554.97 563.75 575.44 590.37 608.00 626.88 645.81 664.16
548.25 554.96 563.75 575.42 590.36 607.99 626.88 645.80 664.17
548.0 554.6 563.2 574.6 589.4 606.9 625.8 644.9 663.4
548.4 555.1 564.0 575.7 590.6 608.3 627.2 646.2 664.6
533.32 538.57 546.11 557.48 574.42 595.99 618.55 640.02 660.01
533.32 538.57 546.11 557.48 574.42 595.98 618.54 640.01 660.01
533.1 538.2 545.5 556.5 573.0 594.5 617.2 638.9 659.1
5334 538.7 546.2 557.6 574.6 596.2 618.9 640.4 660.4

517.07 520.07 524.74 533.54 553.10 583.46 611.59 635.74 657.14
517.08 520.06 524.74 533.53 553.09 583.46 611.58 635.73 657.13

516.9 519.8 524.3 532.6 550.8 581.2 609.8 634.4 656.1
517.1 520.1 524.8 533.6 553.2 583.7 611.9 636.1 657.5
576.31 608.68 634.15 656.13
500 500 500 500 500 576.29 608.67 634.14 656.12 o
0 573.0 606.5 632.7 655.0 Ty
576.4 608.9 634.5 656.5
. finite element mesh N=15
the square grid has mesh length % OA finite element mesh N=16
which corresponds to N=28 Whiteman finite differences
Whiteman linear programming
F1eure 2. Comparative results for plane harmonic problem, second singular solution.
TABLE 8. COEFFICIENTS &, g, (g, 0t; FROM SECOND SINGULAR SOLUTION
TO THE PLANE HARMONIC PROBLEM
a, NOOO(q, 1 982.70) &y NU592(qy+127.69) a, NL20(q,—56.43) a, NL4(x,—156.80)

vmesh N=4  —286.71 —14.58 —110.17 159.17 59.34 27.41 126.21 —176.41
5 —286.00 —14.77 —114.15 175.50 58.55 28.68 132.60 —185.04
6 —285.51 —14.91 —117.02 184.88 58.05 29.38 137.36 —187.16
10 —284.47 —15.09 —122.67 196.06 57.16 30.19 146.95 —180.73
14 -—283.99 —15.10 —124.74 196.64 56.85 30.22 150.52 —176.31
15 —283.91 —15.10 —125.05 196.63 56.81 30.22 151.05 —176.14
16 —283.84 -15.10 —125.31 196.64 56.77 30.22 151.50 —176.31
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SOLUTION OF BOUNDARY-VALUE PROBLEMS 479
truncated equation (3.12) provides, for the finite element mesh N = 16,

u¥(x,y) = 500 — 283.84uf (x, y) — 125.31uf (x, y) + 56.77uf (%, y) + 151.50] (x, y)} (3.36)
= 576.4:5 at x = —:?—‘-%OA, y pu— 0’ .

and this value compares favourably with the 576.29 listed in table 7.7 Our conclusion is that
although the numerical results for this second singular solution are likely to be acceptable in most
practical situations they are not wholly satisfactory because of the deficiencies as revealed by
equations (3.35). The matter is pursued no further here but the remedy apparently lies in still
further adjustments to the forms, cquations (3.18) and (3.30), which are selected for the
functions uj* (x, y). The situation is typical of ordinary applications of the Rayleigh—Ritz method
when resource is made to additional, or different, coordinate functions to effect an improved
solution.

4. PLANE STRESS ELASTICITY BOUNDARY-VALUE PROBLEMS

Singular effects occur over a wide range of different situations in elastic plane stress, sce, for
example, Morley (1963), but attention is specific here to cracked plates with the purpose of
illustrating the manner of calculation for an engineering assessment of the stress intensity factor.
As explained in the Introduction, this class of problem occurs in fracture mechanics where
prediction of safety is based upon the amplitude of the dominant stress singularity, i.e. the stress
intensity factor. The more classical methods of calculation are treated in the book by Sneddon &
Lowengrub (1969), while Wilson (1969) and Newman (1971) have made extensive use of colloca-
tion techniques. In the finite element method the displacement ‘super element’ approach is
typified by the work of Byskov (1970) while Pian, Tong & Luk (1971) employ a mixed variational
approach as a way to overcome the difficulties of inter-element displacement continuity and allow
the singular functions to range over several elements. Consequently, it is not surprising to find that
no attempt is made in such approaches to maintain continuity of the first, let alone the second,
derivatives of the displacements; furthermore, considerations of relative sizing of the singular
regions are also largely unresolved. The numerical examples which we have already treated
indicate that such factors can be responsible for serious degradation in the achieved accuracy and
may, in any case, be avoided in a solution by the present method.

The displacements u}, i}, in an isotropic elastic plate in plane stress are governed, in the absence
of surface forces, by the simultaneous field equations

Ozux 02k o2k
Ox? /2(1 )a:"'%(l"' )ag“oa

%k 0%k % (4.1)
?(1+V)agy 2!'i"2( ) 1120’

t In several practical situations it is only the values of the a,, &, ..., which are of interest. Equations (3.36)
indicate that good estimates of these values may be readily obtained by simple devices, like minimizing

D’ (u—500—0ot,u, — 2oy ...)

ou aul Ou Ou,y
R’
D, ) = fJ. (i‘)x ox (")j (")y)d

with R’ a small region which is suitably contracted around the singular point.

with respect to a,, &, ... where

40 Vol. 275. A.
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480 L.S.D. MORLEY
where v is the Poisson ratio. The stress—displacement relations are

E E E
¥ = —ITV—Z-(e;’; +vey), oy = -1-':—1,2(3; +veg), Tay = my;"y, (+.2)

where the strain components are defined by
e = qulfox, ef =uk[oy, vi, = 0ul[Oy +Ouy|Ox (4.3)

and E is the Young modulus. On the boundary C = C, U C, (see figure 3) the normal and
tangential displacements are described respectively by

up = ucosy+upsiny, u¥ = —u}siny+u;cosy, (4.4)
with corresponding tractions

o = oFcosy+opsin?y +27% siny cosy, } (4.5)

Ths = — (0% — o) siny cosy +7%,(cos?y —sin?y), '

with n the outwards pointing normal inclined at an angle y to the Ox axis and s measured around
the enclosing boundary C in the positive anticlockwise direction.

Kinematic boundary conditions # andfor «* are prescribed on C,.
Traction boundary conditions 0% andfor 7% are prescribed on C,.

Ficure 3. Notation for plane stress elasticity problem with crack.

It is convenient to denote the approximate solution u,(x, y), u,(x, y) where

Uy (%,y) = ug(%,y), uy(%y) = u,(xy) (4.6)
to the simultaneous field equations (4.1) by the symbolic representation
u*(x,y) ~ u(x,y). (4.7)

Thus, in the Rayleigh-Ritz method an approximate solution u(x, y) is obtained by minimizing
the functional

Dt —0) = [[ (02 =0 (e —e) + (03— 0,) (6 —e) + (2 ~7) (Pl 7)1 4R (2.9
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SOLUTION OF BOUNDARY-VALUE PROBLEMS 481

over the amplitudes of the set of admissible coordinate functions which make up u(x,y); each
coordinate function must be of finite norm and the subsidiary conditions

u, =u; andfor wu;=uf on C (4.9)

must be satisfied. The stresses and strains o, ¢,, etc. are calculated by substituting u,(x, 7), 4, (x, y)
appropriately into equations (4.2) and (4.3). The minimum of the functional is provided by

8D (u* —u) = —2D(u* —u,du) = 0, (4.10)

where D(u*, u) = ff (0-: e+ 0-; €y +T:ck:t/ '}’wu) dR
B (4.11)
= f (0';‘: Uy +T::s us) ds
C

on making use of the Green formula and of equations (4.1) to (4.5).

As in the previous problems the piecewise approximating displacements u(x, y) are assumed to
vary linearly over each of the triangular elements which constitute the finite element mesh;
likewise, it can then be shown that to achieve the best available rate of convergence requires the
existence of bounded second derivatives, with maximum modulus M,, for the exact solution
u*(x,y). In solving the problem of a cracked plate we thus seek an expansion for u*(x,y) in the

form
u;"k (x’ y) x> ax+ kglaku;k(x’ y)s

. . (4.12)
wy (%,y) =~ —avy + ,glo‘ku?/k(x, Y),

with the intention of reproducing the analytic structure, apart from possible rigid body move-
ments, of the behaviour in the neighbourhood of the crack tips. The magnitudes of the constants
@, are to be determined by the modified Rayleigh-Ritz method, whereas the constant &« may be
left undetermined in a piecewise linear solution for the displacements.

4.1. Singular functions for crack problems

The general solution for the displacements #, «¥ which are governed by the simultaneous field
equations (4.1) is derived in complex variable form by Muskhelishvili (1953). It may be written

wt +iu) = 5{(3-7) ()~ (1 +9) [0(2) + (-2 F @]}, (4.13)

where ¢(z), w(z) are arbitrary regular functions inside the region R of the complex variable
z = x+1y. (4.14)

The bar indicates the complex conjugate and the prime indicates differentiation with respect to
the complex variable. The stresses acting in a plate of unit thickness are then given by

o+l = 204'(2) + T, } w1
oy —ityy = ¢'(2) +0'(2) +(2-2) $"(2). '
Consider now the single-valued functions
$;(2) = 0y(2) = [(2 —a®)[2a)2 F(z[a) .
$121(2) = 03a(2) = =i6(2) J =t 1o

40-2
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where
Fl(z) =1, F7(Z) = Z(zz_ 1)’
Fy(z) = z, Fy(z) = (2 —-1)2 (4.17)

F5(Z) =z~ 1,

appropriate to a crack of length 2a with centre at O and lying along the Ox coordinate axis as
shown in figure 3. When these functions are substituted into equations (4.13), (4.15) and (4.3)
they yield expressions for the stresses and strains which give finite norm for the functional of
equation (4.8). The stresses oy; and 75,; acting along the Ox coordinate axis are then obtained
from the second of equations (4.15) with z = z = x as follows

Ty = Taygn = 2[2Fj(x)a) + (x* — @) Fj(x/a)] Re[(x* — a?) 24]

(j=1,3,5,...). (4.18)
Tiv1) = Tays = O }

Thus, from equations (4.5), the tractions satisfy the required boundary conditions
ore=Teg =0 for —a<x<a y=0, (4.19)

i.e. along the crack face, for all £. Moreover, we may select the branch for the square root in
equation (4.16) such that the ‘stress intensity’ at the crack tip x = a*, y = 0 is given by
lim |(x—a)}| oy = lim |(x—a)}| 7hyny = 1, k=1,8,
—at —>
x1l=aﬂ wu=a; (4‘20)
=0, k+1,3.
The equations (4.13) and (4.16), (4.17) indicate, in the context of a piecewise linear solution,
that a total of eight singularities are properly to be associated with a crack because of the un-
boundedness at the crack tips x = +a, y = 0 of the second derivatives of the ¢,(z), w,(z) for
k=1,2,3,..,8.
In the modified Rayleigh-Ritz method we put, instead of equation (4.7),

u* ~u+ Y ag(uf —uy), (4.21)

k=1
where the uf (x,y) are obtained by substituting equations (4.16) into (4.13) and where u(x, ),
u;(x,y) are continuous piecewise linear functions each taken over the same finite element mesh.
The series is to be truncated in the knowledge that a satisfactory solution properly requires
retention of at least the first eight terms which involve the constants ;. Moreover, equations
(4.20) show that the first four constants a;, are direct measures of the stress intensity factors. The

functional of equation (4.8), with new argument
Dlu* —u— 3 oy(uf —uy)] (4.22)

k=1

is now minimized subject to the subsidiary conditions, see equations (4.9),

* *
u, =u U, = U
o } andfor ° ‘;} onC, (k=1,2,3,..) (4.23)
Upp, = Unk Usp, = Ugp

being satisfied at least at the finite element mesh node points which lic on C,. If the consequences
of errors arising from pointwise satisfaction of the subsidiary conditions are ignored, the minimiza-
tion of equation (4.22) provides individual equations

8D(u* —u) = 8D(uf —uw) =0 (k=1,2,8,...), (4.24)
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SOLUTION OF BOUNDARY-VALUE PROBLEMS 483

where the variations are arbitrary subject to the satisfaction of equations (4.23). Thus, u(x, y) is
identical with the ordinary finite element solution to u*(x, y), while the u,(x, y) are the ordinary
finite elementsolutions to the «jf (x, y) without regard having been given to thesingular behaviours;
all these finite element solutions may be calculated simultaneously. The constants «;, are subse-
quently calculated from simultaneous linear equations like (2.29) where here, in virtue of
equations (4.11), (4.23) and (4.24),

D(u;k _uj') ulf - ulc) ~ c [O'Zk(u::j _unj) +T:sk(u§;‘ - usj)] ds

2

[ (ot Tgt) ds 4 Dl ), (4.25)

v Uy

where uj) represents piecewise linear functions taken over the finite element mesh such that

Uy = up, andfor ud, = ud atnodes on Cl,} (4.26)
udy, = udy, = 0 at all other nodes, '
and
D(uy* '_uja u* —u) = o [0': (u;aka - unj) +T:s(u§i _usj)] ds ‘—‘J\(’ (O':J' Uy +T;l:sj us) d‘f+D(uj: u0)7
2 /1
(4.27)
similarly, with «° representing piecewise linear functions where
uh =up andfor ud=uf atnodeson Cl,} (4.28)
u) = u) = 0 at all other nodes. '

Any approximations which may be involved in equations (4.25) and (4.27) arise out of pointwise
satisfaction of the subsidiary conditions in equations (4.23).

In virtue of the fact that the singular functions uj; (x, y) satisfy the homogeneous field equations
(4.1) throughout the whole of R it is necessary to evaluate the #; (x,y) and first derivatives only
on the boundary C. However, there may occur in practice other more compelling reasons, such as
where the plate is part of an extensive structure with multiple reinforcements, to adapt Fix’s (1969)
idea, to the modified Rayleigh—Ritz method in order to localize the range of the singular functions
ui (%, y). In such cases it is necessary to evaluate the uj (x, y) and first derivatives at points inside R
as well as modifying equations (4.25) and (4.27).

4.2. Calculation of stress intensity factor for rectangular plate with edge crack
Consider the rectangular plate with edge crack BC = 1 as shown in figure 44 where the ends
of the plate are subjected to uniformly distributed normal stress oy = % with the remainder of the
boundary free from traction and constraint. Attention is specifically confined to the calculation
of the stress intensity factor, see equations (4.20) and (4.21), at the crack tip located at the point B.
Because of symmetry, the problem is readily reduced to one which concerns the square plate
ABCDE, shown in figure 4, with side lengths ACG = CD = etc. = 3. The kinematic boundary
condition u} is then prescribed on C; according to
uf =0 on AB, (4.29)
with traction boundary conditions o and/or 7% prescribed on C, according to
T, =0 on ABCDE,
0¥ =0 in BCD and EA, _ : (4.30)
o¥ =3 on DE.
The Poisson ratio is taken as v = 0.3 and the Young modulus E is considered to be unity.
40-3
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The available computer program accommodates only the first four singular functions uj (%, y)
but, notwithstanding the argument which follows equation (4.21), it is still possible to secure a
satisfactory piecewise linear solution to the present problem in virtue of the fact that the crack is
at the edge of the plate. Because of symmetry about the Ox axis it follows that a; = «, = 0so that
equation (4.21) is further reduced to

u* o~ o (uf —uy) +og(uy —ug). (4.31)
@ »)

E D E D
v
!n]-. l.._z_..l
A B¢ O ~ A PG 6

E ”:22, T:t\'=0 D
gF=1}k=0
oF=1k=0 finite clement mesh N=3 or
Uy =rh=0

crack face
A B C
ur=rk=0 o¥=r}=0
Ficure 4. Plane stress elasticity problems. (a) Rectangular plate with edge crack;
(b) square plate with central crack; (¢) reduced problem.

Moreover, in addition to the homogeneous subsidiary condition on C; given in equation (4.29)
both ufy=uf; =0 on AB, (4.32)

so that equation (4.25) simplifies to

D(u;'k _uja uz - u/’c) = fo [O':k(u;‘:j - unj) +7‘$sk(u$‘ - us;i)] ds (J’ k= 1> 3) (4'33)
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while, in virtue of equations (4.30), the equation (4.27) simplifies to

D(uf —wu*—u) = [ h(uky =) ds (= 1,3). (4.34)

J Dp

Equations (4.16) to (4.20) show that the stress intensity factor (s.i.f.) is given here by
s.aif = a;—oay, (4.35)

and some values are listed in table 9 for three uniform mesh sizes as controlled by the integer N;
the coarsest mesh N = 3 is illustrated in figure 4¢. The calculations are carried out for the two
valuesa = 1 and a = 5 in this reduced boundary-value problem with open ended crack, and with
or without suppressing the term in a5. For the larger value of a the singular functions ;" (%, y) can
be combined in such a way as to approximate the well-known corner functions put forward by
Williams (1952).

TABLE 9. STRESS INTENSITY FACTORS FOR PLANE STRESS PROBLEM,

RECTANGULAR PLATE WITH EDGE CRACK

semi-length ¢ = 1 semi-length a = 5

A A
r Al r Al
one term two terms one term two terms
a, =0,k 1 a,=0,k+1,3 a, =0,k 1 a,=0,k+1,3

saif, N=3 0.1786 0.1838 0.1955 0.2008
sif, N=6 0.1955 0.1981 0.2047 0.2061
saif,, N = 12 0.2035 0.2045 0.2087 0.2087
Y 1.09 1.17 1.21 1.01
¢ —0.5028 —0.4439 ~-0.2911 —0.1491
s.1.f./ 0.2105 0.2095 0.2118 0.2112

. J

Y

s.i.f. long strip 0.211

(Gross et al. (1964))

The following abbreviation is used: s.i.f., stress intensity factor = o, — oy = s.i.f.’(1+c¢N-Y) (say).

In all, twelve values of the s.i.f. are listed in table 9 ranging in magnitude from 0.1786 to 0.2087
and the problem now is to ascertain which is the most accurate value. To avoid the expense of
making further advances to successively finer meshes let us attempt an engineering assessment in
the light of the experience gathered from the preceding examples. Thus, similarly to equations
(2.13) and (3.27) it is assumed over a range of values of N that the s.i.f. behaves like

s.f. ~ s.if(14+cN77), (4.36)

where s.1.f." is the extrapolation of s.i.f. for very large values of N and where ¢ and y have the same
meanings as in equation (3.27). Although three different mesh sizes are only just sufficient to
determine values for s.i.f.’, ¢, v and include the very coarse mesh N = 3, the indication from
table 9 is that the results in the last column, i.e. for @ = 5 with retention of the a4 term, are likely
to be the most accurate because |¢| is there the smallest. This conclusion is reinforced by a further
calculation the results of which are listed in the last row of table 10 where, since it is intended that

uy (%,y) ~ —avy +ayuy (%, y) + agup(x, y), (4.37)

from equation (4.12), should reproduce accurately the analytical structure near the crack tip it
follows, on subtraction from equation (4.31), that

owy+uy(x, .1/) ~—oc1u,,1(x, y) _‘x:}uy:!(x) 7/) ~0 (4'38)
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at a point say on the crack face y = 0% distant 0.25 from the crack tip at B. When a = 5, with
retention of the oy term, table 10 shows that at this point

U, — 0y lhyy — gty = —0.0034 (4.39)

the magnitude of which should be considered in comparison with u, = 0.2948 at the same point.
In the last column of table 9 an extrapolated value s.i.f.” = 0.2112, see equation (4.36), is pre-
dicted and this bears comparison with the value 0.211 obtained by Cross, Strawley & Brown
(1964) using a collocation technique.

TABLE 10. PLANE STRESS PROBLEM OF RECTANGULAR PLATE WITH EDGE CRACK;
SOLUTION CHECK ON THE #, CRACK FACE DISPLACEMENT AT A DISTANGCE OF 0.25 FROM
THE CRACK TIP AT B, FINITE ELEMENT MESH N = 12

semi-length ¢ = 1 semi-length @ = 5
[ A Al r A N
one term two terms one term two terms
o, =0,k F 1 o, =0,k 1,3 a,=0k+1 a,=0,k+1,3

Uy 0.2948 0.2948 0.2948 0.2948
7 0.2597 0.2740 0.2876 0.4448
T — —0.0086 — —0.1466
u, — %“k Uy 0.0351 0.0294 0.0072 —0.0034

4.3. Calculation of stress intensity factor for square plate with central crack

In this last numerical example the s.i.f. is calculated for a square plate with central crack of
length 2BC = 2 asshownin figure 4 5; the ends of the plate are subjected to a uniformly distributed
normal stress o) = & with the remainder of the boundary free from traction and constraint.
Again, because of symmetry, the problem reduces to one which concerns the square plate
ABCDE shown in figure 4¢, this time with kinematic boundary condition «}; prescribed on C;

according to
up =0 on ABand CD, (4.40)

and tractions o and/or 7}, prescribed on C, according to

¥, =0 on ABCDE,
of =0 on BCandEA, (4.41)
o¥ =% on DE.

Details of the modified Rayleigh-Ritz solution follow closely those already described in § 4.2
except that it is no longer possible to simplify the equation (4.25). Twelve values of the s.i.f. are
listed in table 11 where there is seen to be quite substantial variation in magnitude ranging from
0.1122 to 0.1916. Analysis of the results by fitting equation (4.36) shows this time, however, that
the results in the first column, i.e. for a = 1 with the term in o4 suppressed, are likely to be the
most accurate because of the appreciably smaller value which is attained by |¢|. This conclusion
is confirmed after examining the accuracy of the analytical representation of the u, displacement
on the crack face (cf. equations (4.37) to (4.89)), the results of which are listed in table 12. The
extrapolated value s.i.f." = 0.1365 in the first column of table 11 is somewhat larger (as is to be
expected), than the s.i.f. = 0.1255 provided by Koiter’s (1965) formula (Rooke 1970) appropriate
to an infinitely long strip.

Thevalues of the s.i.f. which are obtained for crack semi-length a = 1 are especially interesting.
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When the term in o, is retained then table 11 shows that the s.i.f. converges like N=-% which is
very near the best available rate, but this solution is not satisfactory because of the large value of
¢ (0.4468). The evidence shows that a better result is actually obtained by suppressing the term
in a3 which should really be suppressed also in virtue of symmetry. This experiment highlights the
need for prudence in selecting suitable forms for the singular functions as well as demonstrating
that the inclusion of additional terms does not necessarily lead to an improved result for the s.i.f.

TABLE 11. STRESS INTENSITY FACTORS FOR PLANE STRESS PROBLEM,
SQUARE PLATE WITH CENTRAL CRACK

semi-length @ = 1 semi-length 2 = 5

e A N f—"_—."A‘—_‘-——W
one term two terms one term two terms
oy =0k+1 op=0k+1,3 ap=0k+1 a,=0%k+13
sif, N=3 0.1313 0.1916 0.1124 0.1122
sif, N =6 0.1335 0.1525 0.1237 0.1237
sif, N = 12 0.1348 0.1423 0.1303 0.1303
y 0.81 1.94 0.79 0.79
p —0.0923 0.4468 —0.4600 —0.4656
sif 0.1365 0.1387 0.1393 0.1393
. J

s.i.f. infinite strip

-
0.1255

(Rooke (1970))

The following abbreviation is used: s.i.f., stress intensity factor = oy — o5 = s.if/(14+cN~7) (say).

TABLE 12. PLANE STRESS PROBLEM OF SQUARE PLATE WITH GENTRAL CRACK;
SOLUTION CHECK ON THE #, GRACK FACE DISPLACEMENT AT A DISTANCE OF 0.25
FROM THE CRACK TIP AT B, FINITE ELEMENT MESH N = 12

semi-length a = 1 semi-length ¢ = 5

A AL

r h) ~ Y
one term two terms one term two terms
o, =0,k %1 o =0,k =+ 1,3 a,=0,k+1 o =0k% 1,3
Uy 0.1903 0.1903 0.1903 0.1903
0y Uy 0.1881 0.2250 0.1965 0.1792
Ko lUys — —0.0176 — 0.0161
Uy — Zak Uy 0.0021 —0.0172 —0.0062 —0.0050

k

5. CONCLUSIONS

A practical and very general method of calculation has been described and demonstrated for
the finite element solution of boundary value problems with non-removable singularities.
Particular attention is given to the assessment of the achieved accuracy and the rate of convergence
of the numerical solutions.

The method broadly resolves into four stages as follows.

(i) A solution of the base problem using the piecewise polynomial coordinate functions in the
ordinary Rayleigh-Ritz method.

(ii) - The purely analytical structure of each singularity is then described in terms of appropriate
functions.

(iii) Substitution of these functions into the homogeneous form of the governing field equation
provides individual boundary-value problems each of which are solved by the ordinary Rayleigh—
Ritz method using identical coordinate functions to those of stage (i).
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(iv) The difference between the functions of stage (ii) and the Rayleigh-Ritz solution of stage
(iii) are then used to augment the ordinary coordinate functions of the stage (i) solution to the
base problem. Because of underlying orthogonality relations it is permissible to determine the
amplitudes of these augmenting coordinate functions by a separate Rayleigh-Ritz calculation
which provides a set of linear simultaneous equations equal in number to that of the singularities.

Thus, it is formally acceptable to describe the analytical structure of the singularities by simple
functions which satisfy the governing field equation only at the singular points. Although
experience from the worked examples shows that it is preferable to avoid the use of special
regions around the singularities, there may be compelling and overriding reasons to introduce
such regions in certain circumstances. Then, an idea may be pursued from Fix (1969) where the
special regions are so faired that the requisite piecewise continuity is maintained throughout the
whole enclosed region.

The presence of singularities is of special significance in fracture mechanics where there is scope
for extensive numerical experimentation by engineers questing for rapid, yet reliable, estimates
of the related stress intensity factors. Some specific matters concern.

(1) The most effective and convenient means of representing the analytical structure of
singularities. In complex structures there are likely to be compelling reasons to employ special
regions. Assessment is required of relative sizing of such regions and whether it is then practically
worthwhile to maintain continuity of the early derivatives of the singular functions. Indeed, under
certain circumstances it may not be practically worthwhile to maintain exact continuity of the
singular function itself, cf. the super element approach.

(2) Insome problems it is difficult enough to find augmenting singular functions which satisfy
the governing homogeneous partial differential equation just at the singular point. Indeed, the
partial differential equation itself may be known only in the immediate locality. Experience is
required of these situations; it may be advisable to refine the mesh size near such singular points.

(3) It is not known whether there is computational advantage in employing higher degree
polynomial representation for the ordinary finite element scheme when the sole objective is to
determine the amplitude of the singularity.
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